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Abstract 

A new mathematical structure is introduced, to be called segmented structure, defined by 
the assumption that for any pair of its points x, y a subset is defined, reasonably identi- 
fiable as "the segment joining x and y."  The reason for such a research is the existence of 
a physically reasonable way of deffming the segment joining two points of space-time. 
Thus, a powerful enough structure of space-time arises, which appears as deducible on 
physically reasonable grounds. 

1. Introduction 

In this work we want to describe a mathematical  structure that turns out  
to be relevant in a possibte approach to the problem of  physical foundat ion of  
the space-time structure. Actually, we have endeavored to fully exploit  the 
hypothesis that ,  given two events x and y in the "space-time," there is a 
physically reasonable way of  assigning a set o f  events that  can be thought o f  
as a "segment"  joining x and y. We have carefully avoided any " l inear i ty"  
argument and have used only a few axioms about prolongabil i ty o f  our 
segments, to see what can be deduced therefrom; in fact we have succeeded in 
defining such concepts as dimension and manifold and in proving a number of  
reasonable results about them. We believe that such work has a remarkable 
geometric meaning too,  as it exhibits what may be thought of  as the purely 
geometric origin of  many concepts, usual f.i. in Euclidean geometry.  In 
particular, in a segmented structure it is possible to work out a reasonable 
theory  of  dimension, simplexes, etc. 

1 Work supported in part by C.N.R. 
2 Full address: Via Celoria 16, 20133 Milano, Italy. 

This journal is copyrighted by Plenum. Each article is available for $7.50 from Plenum 
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14 MANIA AND SPARZANI 

2. Abstract  Segmented Structures 

An abstract segmented structure is a pair (M, p) of a nonempty set M and a 
map p: M x M - ~ ( M )  satisfying axioms 1-8 that we will introduce at 
various stages throughout sections 2-4; for any pair (x, y)  E M x M, the subset 
p ( x , y )  is simply denoted by x y  and called the segment joining x and y 
or simply segment xy.  

A x i o m  1. (Vx, y, ' ' E M )  ' '  x , y  [ ( x y = x y  ) ~ ( { x , y ) =  {x', y'})] 
A x i o m  2. (xy  = 4) ~ (x = y )  
A x i o m  3. 3 z E x y  ~ [xz C x y  a n d x z  4= ~p] 
A x i o m  4. [z E x y  and u E zy] ~ z E xu  

We stop to draw a few consequences that will clarify the further axioms we 
eventually introduce. In order to avoid cumbersome nomenclature, we will 
talk of segmented structure also before introducing all axioms with the 
obvious meaning of "the structure satisfying all axioms introduced so far." 

Lemma 2.1. If z E xy ,  then z y  C xy.  

Proof: z E x y ~ z E y x ~ y z C y x ~ z y C x y . Z ]  

Lemma 2.2. If z E x y  and v E xz,  then z E vy. 

Proof: ( z E x y  a n d v E x z ) ~ ( z E y x  a n d v E z x ) ~ z E y v ~ z E v y . D  

Lemmas 2.1 and 2.2 are but symmetrizations of statements contained in 
axioms 3 and 4. 

Theorem 2.1. I fx  v~y, the relation "zl < z2 i f x z l  ~- xz2 is a partial ordering 
x y  

in xy.  

Proof." (i) < is obviously reflexive; (ii) ~ is transitive: (z 1 ~< z2 and 
x y  x y  x y  

z~ ~y za) =~ (xz 1 ~_ xz2 ~- x za )  ~ zl  ~ za for any (Zl, z2, za) E x y  x x y  x xy ;  

(iii) ~y is antisymmetric: (z 1 ~y z2 and z 2 ~y z l )  ~ (xz~ ~- xz2 and x z  2 c_ x z l )  

x z l  = xz2 which, by virtue of axiom 1, implies zl = z2.Z] 
The structure of a segment is further analyzed by the following 1emma: 

Lemma2 .3 .  F o r a n y z E x y ,  x z n z y = ~ .  

Proof." Suppose u E x z  N x y ;  then [z E x y  and u E xz] ~ xu  C x z  ~ u < z x y  

and u ~az;but (z E x y  and u E zy )  ~ z E xu  ~ x z  C xu  ~ z <~ u, which is x y  

clearly incompatible with the former.D 
Lemma 2.3 can be conveniently stated saying that, for any z E xy ,  

x z  u (z} U zy  is a disjoint union, obviously contained in xy.  So far, any non- 
trivial x y  has the structure of a poset without minimum and without maximum. 
For, i fz  is any element belonging to xy,  we can always find a u E x z  (which 

3 Here and in the following ~ means: "is properly contained in" and _c means "is con- 
tained in." 



SEGMENTED STRUCTURES 15 

is nonempty) that obviously satisfies u < z and u :# z. The symmetry of 
xy  

segments forbids analogously the existence of a maximum. It is easy to see 
that we can "extend" any nontrivial segment x y  to a poset with minimum and 

~< • maximum by adjoining the elements x and y (respectively, if  the order is xy)" 

such a subset is called extended segment [xy]; further, we set [xx] = {x}. We 
also have the following: 

Lemma 2.4. I f x  4=y the segment xy  contains at least a denumerable 
infinity of distinct points of M. 

Proof." The proof is quite straightforward, as one easily defines a sequence 
of distinct points all belonging to xy, for instance by setting z o E xy,  
zi+l E xzi, for any integer i.D 

So far, the structure of  a segment is still allowed to be "not flat," in the 
sense that the order we have defined on a segment is not necessarily total. The 
following theorem shows how this requirement is equivalent to a strengthening 
of the statement of  I_emma 2.3: 

Theorem 2.2. I f x  :#y, then < is a total ordering for x y  iff for any 
z ~ x y ( x z  u (z} Uzy =xy). :~y 

Proof" (a) SupposeVz E x y ( x z  tO {z} U zy =xy);  then, if zl, z~ are 
distinct points o f xy ,  we either have z2 E x z l  or z 2 Ezay; in the first case we 

< z- follows. Conversely, have z2 xy < Zl' in the second z 1 Exz2 ,  whence z 1 xy 2 

if the order is total we have, for any z and u belonging to xy: (u = z or u ~< z xy  

orz  < u) ~ (u = z or xu C xz  or xz C xu)  ~ (u = z oru  E x z  orz  E xu) 
x y  

(u = z  o r u  ~ x z  o r u  ~ z y )  ~ (xz u (z} u zy = xy).[] 

Corollary: ifx~ is total, then yx < is the dual ordering of~y: for, let z~, z2 be 

distinct points o f x y  and suppose z~ ~-y z2; then xz  1 c xz2, which implies, by 

Theorem 2.2, zzv - z~v, i.e., z2 ~x Zl r7 

Then we set as our fifth axiom the following: 

Axiom 5. ( V z E x y ) ( x z O  {z} U z y ~ _ x y )  

Thus, any nontrivial segment xy  in M is now a chain, for both < and < ; it 
contains a subchain isomorphic to Q, the chain of  rational numbe~CsYwith yx 
the natural ordering, since it does contain a countably infinite subset, dense 
in itself with respect to the induced ordering (Birkhoff, 1973). Such a subset 
is easily obtained by a procedure slightly more careful than the one exhibited 
in suggesting the proof of Lemma 2.4. We just need to consider, for a given 
nonempty segment ZoZl, a point z~/2 E ZoZl, then ZI/4 E Xgll 2 and 23/4 E gll2Y 
and so on, inserting between zk/2r and zk + t/2r a new point to be called 
z2k + 1/2r+ 1. So, a subset is inductively defined, which is dense in itself and 
countable, so that the quoted theorem applies. 
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3. Topological Arguments 

In this section we need to introduce a number of  topological arguments. 
First, it is obvious that on each nontrivial segment the order topology is defined: 
a basis for it is the collection of  all the subsegments z1z 2 with zl, z2 E [xy]. 
The extended segment [xy] can be given a topology simply by taking as basis 
the said collection of  open intervals o f x y  and the subsets of  the type 
(x} U xz l ( z  1 E x y ) ,  z2y U (y}(z 2 E x y ) ;  In this topology the closure of  xy  is 
evidently [xy]. 

But, more important ,  we can define a topology (or rather various topologies) 
on the whole M. Let us give a previous natural definition: 

Definition. A subset K --- M i s  called convex if  it contains xy  when- 
ever it contains x andy.  

Denote by 3((" the collection of  all the convex subsets of  M. Obviously any 
segment (either extended or not) is a convex set and the intersection of  any 
family of  convex subsets of  M is a convex subset of  M, so that  it makes sense 
to define the convex hull CoA of  any subset A of  M, as 

CoA= A K 
K D A  
K E,gY" 

The convex hull o f  a set x, y consisting of  two distinct points coincides with 
the extended segment joining them. 

Now, there are various topologies on M that appear as naturally definable. 
The first one, which we denote by ~-'1, is defined by  the following basis of  
subsets of M: ~1 = {B C M [ V x E B, V z E M, 3 y E B s.t.y E xz, xy  C B } this 
means that  a subset B E ~ l  must contain, for each of  its points, a segment 
starting from it and pointing to every "direction." It is easy to prove that  ~1  
is indeed a basis for a topology; for, M E  ~ I  so that each x CMbelongs  to at 
least one element of  ~1  ; secondly, let B1, B 2 belong to ~ 1  and consider B 3 = 
B 1 0  B 2; let x belong to B 3 and z to M: then there is a Yl CB1 N x z  and 
Y2 EB2 n xz  such that xy  1 C B 1 and xy2 C B2 ; as the order is total on xz, we 
can suppose, say, y~ < Y2, then xyl  CBa N B  2 =B 3. 

x z  

It may be worth remarking that this topology is not so obvious, in the 
sense that, for instance in the standard case of  the Euclidean space and 
Euclidean open segments in it, if--1 does not coincide with the usual topology: 
It is strictly finer than that, as one easily realizes by considering, say in R 2, 
such subsets as the one sketched in Figure 1, which is indeed an open set for 
J 1  and not an open set for the usual topology. 

One also realizes that the crucial shortcoming with this topology is that it 
is not necessarily locally convex, as the exhibited example again shows. So it 
seems natural to introduce the following topology, which we shall call J 'K:  
consider the collection of  subsets o f  M defined by  ~ K  = ~ 1  ("1 ~/ ' ;  ~ K  is a 
basis for a topology essentially because M is convex and the intersection of  
convex subsets is a convex subset; thus ~ K  defines a topology Oq'K. 9-'K is 
locally convex and is in general coarser than J ' l  • 
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Figure 1. 

A further topology that one might be tempted to introduce in M is the 
inductive topology ~ with respect to the family of all segments and of their 
natural injections in M: This is the finest topology for which all such injections 
are continuous; we will show that ~ is tiner than ~ ,  and in general strictly 
so. In order to assure the equivalence between these two topologies one further 
axiom is going to be needed, which amounts to reqtfifing that every segment of 
M can be prolonged. We now prove the following theorem: 

Theorem 3.1. For a segmented structure (satisfying axioms 1-5) we 
have ~ _ J l -  

Proof." I_etA C M, A E J 1 ;  then, for any segment xy ,  ] ~ ( A )  = x y  (~ A 
is open in xy:  for, i f  x y  N A ~ 4, take any z E x y  N A and choose z' and z" 
with the properties zz '  ~_ z x  • A and zz" c zy  N A, which is possible by virtue 
of the assumption A E ~-'1; then z 'z" is an open subset o f x y  containing z and we 
have z'z" = z 'z  U {z} U zz " c - (zx n A )  U {z} U (zy N A ) ~_ x y  N A.V] 

In trying to prove the converse ( ~ _c Y l )  one comes upon the difficulty 
that one cannot prolong a segment beyond either one of its extreme points; 
all example will clarify the matter: Consider the closed ball Bn of radius equal 
to 1 in R n and define a segment x y  in the usual (Euclidean) way; note that 
none of the segments with one end on the boundary S n -  tof/~n can be pro- 
longed beyond that end; now consider a subset F Of Bn defined as the union 
of a ball whose radius is strictly smaller than 1 with one arbitrary point z of 
Sn - 1; this is not open for the topology J a ,  obviously; but it  is open for f x ,  
because any ]x~(F) is open in xy ,  as z cannot belong to it. 

The last example could raise the suspicion that ~ being finer than 3-1 
depends on the fact that there are points not belonging to any segment, 
rather than to the nonprolongability of some segments; that this is not so is 
shown by the following exampte: consider a closed (in the Euclidean topology) 
halfplane M in R z and let s be the straight line boundary of M; let the segments 
in M be defined in the obvious way: each point of M is contained in a segment 
(note, however, that for points on s the "direction" of such a segment is 
uniquely determined). A subset of  M that is the union of an open subset (in 
the sense of the Euclidean topology) of the half-plane with an open segment 
lying on s is open for J ' I  and not for J ' l ,  as is easily seen; furthermore, with 
respect to J-I, M is even a nonconnected topological space, in that it can be 
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obtained as the union of two of its disjoint open subsets: s and its complement in M 
(that this is not so with respect to 3"1 is immediately seen). 

On the other hand, if we postulate the following further axiom the 
situation actually improves: 

Axiom 6. I f xy  is a nontrivial segment of M, then there exists a 
z E M  such that x E zy (hence xy  C zy). 

In fact we now prove that under Axioms 1-6 the following result holds: 

Theorem 3.2. The two topologies ~ and Yl  onM are equivalent. 

Proof." We have already proved that 9-1 c ~-'x- As for the converse, 
suppose A E ~ ;  that amounts to saying that xy  f3 A is open in xy for any 
segment xy c_ M. Let x E A  and z EM; consider the segment xz and, by virtue 
of Axiom 6, choose a point y E M  such tha tx  E y z ; y z  N A  is open inyz  and 
contains x; it will then contain a segment z'z" such that x E z'z" C yz c~ A; it 
follows that, say, xz"~  xz n A, so that A E ff'1.[3 

As for general properties of the topologies so far introduced it is easy to see 
that 9-1 (and hence ~--I) is a T1 topology: Each subset of M o f t h e  form 
{x}(x EM)  is closed; that M -  {x} is open for ~-'1 is immediately seen, since 
for any z E M  - {x}, the nonempty segment zx contains a subsegment zy (take 
any y E zx) which is contained in M - {x}. As for 3-  K, we do not have at this 
point any statement, but the question will be examined more closely in 
Section 5. 

4. Geometrical Axioms 

In order to develop a fairly reasonable geometry of polyhedra in a segmented 
structure, we have to introduce some further axioms, the first of which amounts 
to requiring the uniqueness of the prolongation of a given segment. It can be 
precisely formulated in two points, as follows: 

Axiom 7. If x, y, z, w, are four distinct points of M, then 
(a)y E x z  61 xw implies either z E x w  or w @xz; and (b) x E yz and 
z E x w  imply x Eyw.  

While (a) means that two prolongations of the same segment must be one con- 
tained in the other, (b) means that the prolongation of a subsegment of a given 
segment is a prolongation of the whole segment as well 

Axioms 7(a) and 7(b) will be used throughout as they will prove crucial in 
many proofs; it is not easy to see what happens if we relax even only one of 
them. 

Next, we make the following definition of join and extended join. 

Definition. IrA and B are nonempty subsets of  M, the join (respectively, 
extended loin) of  A and B, denoted by AB (respectively, [AB]), is 
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the subset of M consisting of all segments (extended segments) joining 
a point of A with a point of B: 

U xy (respectively, [AB]: = ~ [xy]) AB: 
x E A  x A 
y E B  y E B  

With this definition we have, obviously, 

A U B ~_ [AB], AB c_ [AB], AB = BA, A ~- B =~ AC ~- BC, 

AA ~ A iffA is convex 

(x} (y}=xy, [{x} ~}]  = [xy] for any couple ofpointsx,  y of M; besides, 
lAB] is never empty, and AB is empty if and only ifA = B = {x} with x E M. 
In terms of join, a useful characterization of openness is the following: 

Theorem 4.1. I fa  setA __qMis open (with respect to Y l  - J I )  then 
A C _ A { x } , V x E M .  

Proof." Suppose A open in M; then i fy  E A and z E M, fred a z' such that 
y E z'z; since A is open, there exist z" E A C~ z~; then y @ z"z _~ A {z}.[3 
The converse is not true, as the example of Q c R shows (with obvious 
definitions of segments). 

An interesting and natural property of the join is the one assumed with 
the following axiom: 

Axiom 8. Ifx, y, z are distinct points of M, 

(~x~ ~v~)~z) = ~x~(~y~z~) 

We will often refer to this property as assoeiativity. 
Before showing what happens with extended joins, note that associativity 

allows for a sensible definition of triangle in M: 

Definition. Call triangle with vertices x, y, z, (distinct points of M) 
the subset xyz of M given by ({x} {v}) {z}. Analogously call extended 
triangle [xyz] the subset [[{x}{y}] {z}]. 4 

It is immediately seen that, by virtue of Axiom 8, the definition ofxyz  is 
completely symmetric with respect to the three points x, y, z. As for extended 
things, the following theorem obtains: 

Theorem 4.2. Ifx, y, z are distinct points of M, then 

[[{x}~y}] {z}] = [{x)[~v){z)]] 

Proof." The two subsets of M that we must show to be equal contain the 
common nonempty subset (x)(~v) (z)); an easy direct inspection shows that 
points of [[(x) (y)] (z}] that are not in ( ~ x ) ~ ) ) ( z )  may only lie on [xy] 
or on [xz] or on [yz] and these sets are contained in [ (x) [ {iv) (z)] ] ; thus the 
proof is completed.J3 

4 From now on, by x, y, z . . . .  we will always mean points of M, unless the contrary is 
explicitly stated. 
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z 

/ 
X U" V '  Y 

F~ure 2. 

Theorem 4.3. Every triangle is convex. 

Proof." Let xy z  be a triangle of M and u and v two distinct points of xyz;  
this means that u' and v' exist, belonging to x y  (say) such that u E zu' and 
v E zv' (see Figure 2). In order to show that a point w o fuv  also belong to 
xyz  consider the triangle zu'v' c_ zxy. Remark that, by associativity zuv = 
uzv' c_ u'zv' = zu v' ', as w @ zuv', w E zxy  follows.D 

It may be interesting to show an explicit example of a structure satisfying 
Axioms 1-7 but not Axiom 8, thus showing the independence of the latter 
from the former. Le tM'  = R 2 be given a segmented structure by the following 
prescription: The segment joining (x 1, Yo) with (x2, Yo), is ((x, y )  E ~2 s.t. 
xl < x < x2, Y =Yo }; the segment joining (xl, Ya) with (x2, Y2), say Yl > Y2, is 
the set { ( x , y ) c  R 2 s.t. xl < x, y =Yl } U {(x ,y)E ~z s.t. Yl > Y > Y2 } tO 
( ( x , y )  E g~2 s.t. x < x 2 , y  =y~ }; in other words segments are open chains in 
R 2 ordered by the lexicographic order. So far, M'  is a segmented structure 
satisfying Axioms 1-7, and also Axiom 8, trivially as any triple of points of  
M consists of coHinear points, so that every triangle is trivial. Consider now 
the set M = M'  x R -= R 3 with the following definition of segments: I f  two 
distinct points have the same "third coordinate," say (x, y,  z), (x', y', z), 
define the segment joining them via the definition previously given for M '  
and the obvious bijection of M'  onto M'  x (z}; if two points do not  have the 
same third coordinate, define the segment joining them as the usual Euclidean 
open segment; one easily checks that this structure satisfies Axioms 1-7. On 
the ' ' " " ' " other hand ((x, y ,  z ) (x  , y ,  z))  (x , y ,  z } contains properly, whenever 

t ! f r? t !  ! • 

z ~ z ,  ( (x ,y ,  z ) } ( ( x , y ,  z ) (x  , y ,  z )) as one easily sees. 
Further consequences of  the associativity are the following: 

Lemma 4.1. A(BC)  = (AB)C for any triple A, B, C of subsets of  M. 
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A(aC) 
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= X~JEA ( {X}(y~B (Y } {I" } )) = X('JEA ( {X }( ~Y } {Z})) 
zEC yEB 

zEC 
= U ({x}{y})(z}) = ( ~ ) c  

x~_A 
yEB 
zEC 
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Lemma 4.2. {x}A is convex whenever A is convex. 

The proof is elementary. 

Lemma 4.3. ( xy )K  is convex whenever K is convex. 

Proof. ( xy )K  = ({x} {y})K = {x}((I'}K), which is convex, as Lemma 4.2 
shows. 

Lemma 4.4. K1K 2 is convex whenever K1 and/(2 are convex. 

Proof. Let {x, y} - KIK2; this means that there exist xl, Yl in K 1 and 
x 2 , y  ~ in K 2 such that x E x l x 2 , y  Ey~v2; then x E (xl }K2,y E {vl}K2, and 
this implies, by the very definition of join, x y  c ( (x l }K2) (~ l}K2)  c_ {xl}~vl}K2 ' 
where the relation K2K 2 ~- K 2 has been used. As {xl} (yl}K2 ~- K1K 2 (as K 1 is 
convex) the proof is completed.D 

Completely analogous lemmas hold in which joins are replaced by extended 
joins. 

We now have to go into a number of  results concerning triangles: 
The aim is to exhibit the geometrical properties of a segmented structure 
satisfying Axioms 1-8 and to prepare the background for the main theorems 
on manifolds. We will call x y z  a nontrivial triangle if x, y, and z are not collinear, 
i.e., if none of them lies on the segment joining tile other two. Note that, by 
virtue of Axiom 7(b), if two points z and z' of  M lie on the prolongation of 
a nonempty segment xy ,  then they are cotlinear with both x and y. 

Lemma 4.5. I f x y z  is a nontrivial triangle, and if u E y z ,  then 
x y z  = x y u  U xu  U xuz  and the union is disjoint. 

Proof. The only nontrivial thing to prove is disjointedness. This is where 
nontriviatity of the triangle comes in. For, suppose w E x y u  N xu  (see Figure 
3); then, as w E xyu ,  there must be a point u' E y u  such that w E xu' i  but then 
w E xu  fq xu '  implies either u E xu '  or u' E xu, and this leads easily to the 
collinearity of x, y, and z. Completely analogous is the proof for disjointedness 
of  xu  and xuz  and o f  x y u  and xuz.[S] 

Remark. If  the extended triangle is considered, an obvious argument leads 
to the conclusion that [xyz] = [xyu] U [xuz] and that [xyu] cl [xuz] = [xu]. 

A very important result is now the following theorem: 

Theorem 4.4. I fu  E x y  and v E yz ,  then xv ¢q zu 4= ~. 
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X 

y U '  U Z 

Figure 3. 

Proof. As xv  is nonempty  (unless x E yz ,  in which case the theorem is 
trivial) choose a point r on it: r belongs to xyz ;  if  r E zu our task is completed; 
(see Figure 4) by Lemma 4.5 the only other possibilities are r E z x u  or r E zuy. 
Consider the first case: Then, by Axiom 8, there is a point r' E z u  such that  
r E xr ' ;  by Axiom 7, as r E xr'  N xv ,  either v E xr '  (which is false as v qS_ x y z )  
or r '  E xv ,  so that  r' E zu  N xv .  If, on the other hand, r E zuy  (then call it r") 
consider the triangle zvu; obviously r" E z v u  and not to vu or to vuy, as is 
seen applying the remark following Lemma 4.5 to the triangle xvy.  Then the 
above argument works again and shows that  there is a point r '  on zu (3 vx. [] 

I f  now Axiom 7(b) is taken into account, it is easy to see that for a non- 
trivial triangle the said intersection consists o f  exactly one point. 

We proceed now with the following lemmas: 

u 

FN~e4.  

Y 
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z 

X 

w 

Figure 5. 

Lemma4.6 .  I f u E x z ,  v E y z ,  w E x y ,  t henwzNuv- - /=¢ .  

Proof. (See Figure 5). By Theorem 4.4 there is a z '  E zw  ~ uy, so that 
the triangle zuy  can be considered and associativity applied to it: zz '  N uv is 
not empty and so is wz N uv.l-q Again nontriviality o f x y z  would lead to 
wz N uv consisting of just one point. 

Lemma 4. 7. I fy  E xp  and v E xyz ,  then pv n y z  ~ 4~. 

Proof  (see Figure 6). As v E xyz ,  there exists w E x y  such that v E zw; 
applying Theorem 4.4 to the triangle pwz gives the result.Vl 

Remark. Ifv'  belongs to the side x z  of x y z  ("opposite" to p), the lemma 
still holds, again by virtue of Theorem 4.4 applied to the triangle pxz.  

A basical lemma is the following: 

Lemma 4.8. I f  u, v, w belong to xyz ,  and v E up, then wp O x y z  4= ~. 

Proof  (See Figure 7). First it must be proved that there are two points 
u' and v' belonging to distinct sides (one of the points possibly coinciding with 
a vertex) of the triangle such that uv C u'v'; this can be easily done as follows: 

P 

x I 
V' 

Figure 6. 
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P 

Divide up xyz  into three triangles by the segments ux, uy, and uz, then check 
where v lies: If  not on one of the three segments named (in which case the 
result follows immediately), say, v E uzy, apply associativity to find v' E zy, 
then repeat the argument starting from v and conclude [here Axiom 7(b) is 
crucial] that u' E x y  and v' E z y  must exist such that uv Cu'v'. If now w Ezu 'y  
(that is either to zu'v' or to u'v' or to u'v'y) the result follows by Lemma 4.7. 
I f  w E xu'z find w' E xz  such that w E u'w'. Now the result follows by applying 
the remark following Lemma 4.7 to the triangle u'v'w'. Thus, a point w" exists 
belonging to u'v'w', and then to ,x, yz, such that w" E wp and the lemma is proved. 
Note that, by Theorem 4.3, ww ~ xyz. [] 

In order to generalize these lemmas to tetrahedra and polyhedra we need 
some previous definitions and remarks. 

From what we have seen with Theorems 4.2 and 4.3 it is evident that 
every triangle is convex, every extended triangle fs convex, and the equality 

[xyz] = Coax, y, z} 

holds true for any triple (x ,y ,  z) of points of M. 

Now we define, by induction, 

x ~ . . .  x~ = ( x l " "  x~_ 1)(x ,d  

and, analogously, 

IX1" ' "  Xn] = [[XI  "" " X n - - 1 ]  (Xn}]  
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that  is, what we can reasonably call the n-polyhedron and extended n-poly- 
hedron o f  vertices x l , .  • . ,  Xn; it  is easy to generalize the above equali ty to the 
following: 

[ x l  ' x . ]  = Co(x1 . . . . .  x.} 

indeed, t h a t  Ix  I , . • x n ]  ~.~ C o { x  I . . . . .  x/t } is  o b v i o u s  f r o m  t h e  d e f i n i t i o n  o f  t h e  

left-hand side, and that Ix1 " " • xn] ~ Co(xl  . . . . .  Xn} is shown by proving, by 
induction, that Ix1 " " • Xn] is convex. Suppose that Ix 1 • • • Xn] is convex for 
any n-tuple (x 1 . . . .  , Xn); then Lemma 4.2 (generalized to extended joins) 
shows that  [xl "" " Xn+l] = [[xl "" " Xn] {Xn+l} ] is convex too. From now on, 
then, the symbols [xl • " • Xn] and Co{x 1 . . . . .  xn} can be interchangeably used; 
notice, in particular, that,  i f y  E Co{x 1 . . . .  , Xn}, a point  y '  E Co{x 1 . . . . .  Xn-  1} 
can be found such that y E [V~Cn], On the other hand, it is true by  definition 
that i f y  E x  1 • • • Xn there exists a point  y '  E x  1 • • • Xn_ 1 such t h a t y  E y ' x  n. 

We now generalize Lemma 4.7 to the case o f  a 4-polyhedron,  as this case 
proves useful for the general case too. 

L e m m a  4.9. Let  x l ,  x2, x3, x4 be distinct points, y E xlx2xax4 and 
x2 E x l z ;  then yz  r3xlx2x3x 4 4:~3 and is a convex subset o f y z .  

Proo f  (See Figure 8). As y E xix2x3x4, there exists y '  E x2x3x 4 such that  
E t . y x ~  ; consider the triangle xty'z:  Theorem 4.4 states that there exists 

y"  c x2y '  z y  ; men y y _ x l y " y  ' c_ x1x2xyY4 ; y y can be assumed nonempty  
because y = y "  would imply collinearity o f  xl, x2, z, y, y ' ,  and the p roo f  would 
be trivial.El 

x 1 

Figure 8. 

x 4 
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NOW, let K be a convex subset of  M; let K* be the following set: 
K* = (x E M, s.t. ~ xl ,  x2 E K s.t. xl E xx2}; then the following lemma is 
important: 

Lemma 4.10. For any K, convex subset of M, K* is convex and, if 
K contains at least two distinct points, K ~ K* 

Proof. (See Figure 9). Let x, y E K*; then xl,  x2, Yl, Y2, exist in K such 
tha tx  2 E x l x ,  y2 Ey t l , ;  we have to show that x y  CK*:  Let z E x y  and let u 
be any point o f x l x 2 y i y  2. As K is convex we have also [xlx2ylY2] = 
Co(x1, x2 , y l ,Y2}  ~- K; by Lemma 4.9 u' and u" exist such that u' E x u ,  u" E y u  
and u', u" belonging to xlx2yly2;  consider now the triangle uxy;  by Lemma 
4.6 u'u" N uz is nonempty so that a point v exists such that v E uz and 

' " ~  c t v E u u - x lx2y ly2  - K. As for the second statement of the lemma, note hat 
i fK  = {x}, then K* = ~b; but that i f K  contains at least two points, from x EK, 
x y  ~_ K follows for some y ~ x, and then x, which lies on a (actually on each 
"left") prolongation o f x y ,  belongs to K'E]  

x I 

x 2 

¢ 2  

Y 

Yl 

Figure 9. 
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Figure 10. 

The second fundamental property of the operation K -+ K* is idempotency, 
proved by the following lemma: 

Lemma 4.11. I fK-~ M is convex, then K** = (K*)* = K*  

Proof (See Figure 10). Obviously we just need to show K** _c K* I fz  
belongs to K** it means that x, y exist, belonging to K*  such that, say, 
y E xz; thus we reproduce the situation o f Lemma 4.10 as for points x and y, 
adjoining now z. Remember that the whole uu'u" is obviously contained in 
K; then consider uxz: A point z' exists on ux such that u" E zz'; take now a 
z" belonging to the nonempty set uu' f3 uz'; we have z" E uu' ~- K; besides, 

t¢ p " E r !  . f !  . . . as z C uz a point v uu C K exists such that v E z z, and this lmphes 
z E K*I-t 

5. ManifoM Theory in Segmented Structures 

We now want to work out a manifold theory in a segmented structure; it 
will turn out that many results familiar from the Euclidean case generalize to 
a segmented structure. First we need some natural definitions: 

Definition. A subset V of M is a manifold in M if V = Co V and if V 
contains the extended prolongations of all the segments lying in V; 
this may equivalently be formulated by saying that if  x, y are distinct 
points in M and i f x y  contains two distinct points belonging to V, 
then [xy] c K 
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Obvious consequences are that M itself is a manifold, every subset of  M 
consisting of a single point {x} is a manifold inM, and that if  V~ is a manifold 
for each ~ E A, then f'l~ V~ is a manifold. 
This allows us to define the manifold spanned by a subset A of  M, as the 
intersection of all manifolds containing A; we will denote it by  VA =: vQA IT, 
Vis a manifold. 

Definition. n distinct points (xl . . . . .  xn) of M are said to be Co inde- 
pendent (respectively, V independent) if the relation {xl . . . .  , Xn} C 
Co{yl . . . . .  Yr} (respectively {Xl, . . . ,  Xn} C NO21,...,Yr} is not 
satisfied for any r-tuple @1 . . . .  ,Yr) of points of M, with r ~< n - 1. 

It is obvious that V independence implies Co independence, as Co (Yl . . . . .  Yr} c- 
V{Yl . . . . .  Yr} and the inclusion is, in general, strict. 

Accordingly, we introduce the following definition of dimension for a 
segmented structure M; the definition makes sense for any convex subset K 
of M [such that Axioms 1-8 are satisfied in K (this condition is nontrivial for 
Axiom 6)],  in that K itself may be thought of as a segmented structure. 

Definition. We say that a segmented structure M has a finite Co di- 
mension (V dimension) and that this is n, where n is a positive integer, 
if there is in M a (n + 1)-tuple of  Co-independent (V-independent) 
points but no (n + 2)-tuple of  such points. 

We will denote by nc the Co dimension and by n v the V dimension. If  for 
any n there is an (n + 1)-tuple of  Co-independent (V-independent) points, 
we say that Mhas infinite Co dimension (V-dimension). 

The relation between Co and V independence implies that if nc and nv 
both exist finite, then nc >~ nv holds true; as for other possible cases, we can 
say that if the V dimension is infinite then so is the Co dimension. If, for a 
given segmented structure M, both the dimensions exist finite, we call the 
positive or null integer n c - nv the complexity of M; if nv is finite and the 
Co dimension is infinite we say that the complexity is infinite; the complexity 
is not defined if both the dimensions are infinite. 

An elementary example will clarify the significance of such a definition: 
Consider a plane convex polygon with n sides (n ~> 3) and such that three of  its 
vertices are never cotlinear; its interior M can be given the obvious Euclidean 
segmented structure; M has complexity equal (its Co dimension being equal to 
n - 1) to n - 3, as is easy to check; analogouslyB2, the open unit ball in R 2, 
has infinite complexity; these trivial examples elucidate, by the way, the 
algebraic-geometric relevance of the notion of complexity. 

We now proceed to establish the main properties of manifolds with the 
aim of getting a better description of the relations between topology in 
M and its (to be defined) simplexes. A few lemmas will be needed. 

By independence and independent we will always mean, unless the contrary 
is explicitly stated, Vindependence and V independent, respectively. 

Lemma 5.1. I f K  is a convex subset of M containing at least two 
distinct points, we have VK = K* 
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PrOOf. (a) K *  ~- V K  because z E K* imphes that z lies on the prolonga- 
tion of  a segment of  K and hence z E VK. (b) V K  c_ K *  because K ' i s  a non- 
empty  convex subset containing K, such that K* = K * *  and hence is a manifold.E] 

L e m m a  5.2. I f A  is any subset of  M containing at least two distinct 
points, we have- VA = (Co A)*  

P r o o f  From Lemma 5.1 it follows V(CoA) = (CoA)* On the other hand, 
V(CoA) ~ VA and also V(CoA) D_ VA since CoA ~ VA and V ( V A )  = VA.E3 
Take, in particular, A = x l  " " " xn: We have V { x  1 . . . . .  Xn} = Ix1 " " " Xn]* = 
(Co {xl . . . . .  Xn})* According to our definffions, it is obvious that, whenever 
(xl . . . . .  Xn) is an n-tuple of  independent points, V{Xl . . . . .  Xn} has dimension 
n - 1; for, it contains the n-tuple (x 1 . . . . .  xn)  of  independent points and it 
cannot contain an (n + 1)-tuple (Yl . . . . .  Yn+ 1) of  independent points by the 
definition of  independence. 

L e m m a  5.3. I f  {.vl . . . .  ,.In) is an n-tuple of  independent points, 
then we haveyi  6 V ~ I  . . . . .  Y i , . . . , Y n }  for any i from 1 to n. (The 
caret over Yi means that Yi has to be omitted). 

Proof. The proof is obvious: I f  y i  E V (Yl . . . .  , fii, • • . ,  Yn} then {Yl . . . .  , Yn} 
c V { y  1 . . . .  , .Yi, . . . .  Yn}, which cannot be, owing to the independence assump- 
tion.Yq 

L e m m a  5.4. If  @1 . . . . .  Y n -  1) is an (n - 1)-tuple of  independent 
points andyn andz  exist such t h a t y  n ~ V { v i , . . . , Y n - 1 }  and 
{Yl . . . . .  Yn} C V~V I . . . . .  Y n - t , z } ,  then V~v 1 . . . . .  Yn) = V{Yl . . . . .  

y n - l , z } .  

Proof. For the sake of brevity, put W-~ V ~ I  . . . .  , Y n -  1 }, I f  Yn - V ~ l ,  . . . ,yn} ,  
Wz -- V ~ I  . . . .  , Y n -  1, z}. We already know that Wz = ((z}W)* Then, asyn E Wz, 
we can find p and q in {z}W such that (unless yn E Loq], which is the most 
favorable case and leads to an immediate proof), say, p E y n q  (see Figure 11). 
I f  now p'  and q '  are those points o f  W such that p @ [zp'] and q E [zq'], 
consider the triangle zp'q': p 'q  and q~v meet in r; on the other side r belongs 
to the triangle Ynqq', so that  Ynq' and qp'  meet in a point r', which cannot 
coincide with p '  because Yn 6 I f  and because therefore q can always be 
chosen o f f  W as well. Then q, which is on a prolongation o fp ' r '  (lying in Ifyn) , 
and z, which is on a prolongation o f q q '  (lying in Ifyn) are in Wy n. Therefore 
I f  z ~- Wy n and hence the conclusion.D 

Corollary. Owing to the Lemma 5.3, Lemma 5.4 is a for tk )r i  true if the 
first two assumptions are replaced by the assumption " I f  (Yl . . . . .  Yn) is an 
n-tuple of  independent points of  M."  

L e m m a  5.5. Suppose that for a given r, with 1 ~< r ~< n - 1 the 
following is true: I f ( y  1 . . . . .  Y n -  1) is an (n - 1)-tuple of  independent 
points, i f y n  ~ V{Yl . . . . .  Y n -  ~}, and i f z  1 . . . . .  z r are points such that 
~'1 . . . . .  Y n -  1, Yn} c V{Vl, . . ., Yn-r ,  Zl . . . . .  zr}, then V~vl . . . . .  Yn} = 
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z 

f 

1 

Figure 11. 

V{Yl . . . . .  Y n - r ,  z l  . . . . .  zr}. Then the same statement with r replaced 
by r + 1 is true. 

Proof .  L e t  {Yl . . . .  , Y n - 1 }  be n - 1 independent points, let 
Yn 6 V(Yl ,  . • ., Y n - 1 } ,  and let z l ,  . . . ,  zr+ l be such that (,v 1 . . . . .  yn}  C- 

V{Yl . . . . .  Yn-r-1,  zl . . . . .  zr+1}- Note that {zl,. •., zr+l} ~- V(Yl . . . .  , Y n - 1 }  is 
certainly false, because it would imply Yn E V{Yl . . . . .  Yn} ~- V(Vl . . . . .  Y n - r -  1, 
zl . . . . .  zr+l} c_ V{Yl . . . . ,  Y n - 1 } ,  and this is contrary to the assumption. Then 
there is at least one of  the z[s, say zl, not belonging to V ~ y l , . . . ,  Y n - 1 } .  , 
Note now that we have ~v 1 . . . . .  Y n - 1 ,  z l }  c_ V(Yl . . . . .  Y n - r - 1 ,  z l ,  • . . ,  Zr+lY ; 

the set o f  points on the left-hand side and the set of  points on the right-hand 
side differ by (at most) r points (that is, the second set contains z2, • •., Zr+l in 
place o f y n - r ,  . . . .  Yn-1), so that we are in a position to apply the result which 
has been assumed true. Then we conclude: V{yl  . . . . .  Y n - 1 ,  z l  } = V{Yl . . . . .  Y n - r -  b 
gl, • " " ,  Zr+l}; and, again taking into account the assumption ~v i , . . . ,  y n }  ~ - 

V{Yl . . . . .  Y n - r - 1 ,  z ,  . . . . .  z~+,}, we get ~1 . . . . .  Yn} c V{y  1 . . . . .  Y n - , ,  zl}; 
this time, a s y n  ~ V { Y l , .  • .,Yn-1}, we can use Lemma 5.4 and get V{y~ . . . .  , Yn}  = 

V(Yl . . . .  , Y n - 1 ,  gl} = V~Vl . . . .  , Y n - r - l ,  Zl . . . . .  Zr+l} .D 
The following theorem is now obvious: 

T h e o r e m  5.1. If  0'1 . . . . .  Y n - 1 }  is an (n - 1)-tuple o f  independent 
points, i fyn 6 V ~ I  . . . . .  Y n - 1 }  and z 1 . . . . .  z n are such that 
{Yl . . . . .  Yn} C V{zl . . . . .  Zn}, then V(Vl . . . . .  Yn} = V{zl . . . . .  zn}. 
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Corollary. Owing to Lemma 5.3, Theorem 5.1 is obviously true if  the first 
two assumptions are replaced by the assumption " i f  ~vl . . . . .  Yn} is an n-tuple 
of  independent points." 

Corollary; The converse of  Lemma 5.3 is now provable; i.e., i f  (Yl . . . . .  Y n - 1 }  
is an (n - 1)-tuple of  independent points, i f y n  is such that  yn ¢ V(Yl, . ' . . , Y n - 1 } ,  
then Yl . . . . .  Yn are independent. 

Proo f  Suppose (Yl . . . .  , Yn} dependent; this would imply the existence of  
zl . . . .  , Z n - t  such that (Yl . . . . .  Yn} ~- V(zl, . . . , z n _ l } ;  but ,  as y l ,  . . . , Yn -1  are 
independent and contained in V { z l , . . . ,  Zn-  1 }, we have, by  Theorem 5.1, 

V(Yl . . . . .  Y n - 1 }  = V{zl . . . . .  zn -1  }; as yn E V{Zl . . . . .  Zn - 1} a contradiction 
arises.E3 

Theorem 5.2. I f  V ~  Mis  an n-dimensional manifold (with n I> 1) 
and if  ( x i , . . . ,  xr) is an r-tuple of  independent points of  V, with 
r ~< n, then there exists an Xr+l in V such that {xl . . . .  , xr, Xr+l} is an 
(r + 1).tuple of  independent points. 

P r o o f  V{x I . . . . .  Xr) cannot coincide with V; for, since V has dimension 
n, there must exist an (n + 1)-tuple of  independent points {z l , .  • . ,  zn +1} such 
that V { z l , . . . ,  Zn +1} = K V { x l , . . . ,  xr) = V, with r < n, would contradict the 
independence property of  the zi; then pick an xr+l ¢ V(xl . . . .  , Xr) and 
belonging to V; by  the corollary just proved, x~ . . . . .  xr, Xr+l are independent.E] 

It is obvious that,  in the case of  a manifold with infinite dimension, a 
completely analogous theorem warrants the possibility of  finding in it an 
arbitrarily high number of  independent points. 

L e m m a  5.6. Let  A be a subset o f  M, such that VA is of  finite 
dimension n and A is open in the topology ~ ( V A )  induced on VA 
by J ' l  = 3-'~r. If  (xl . . . . .  xr) is an r-tuple of  independent points in 
A, with r ~< n, then there exists in A a point xr+~ such that x 1 . . . . .  Xr, 
xr+t are independent. 

Proof. Use Theorem 5.2 and find a point xr+l E VA such that  xl . . . . .  xr, 
xr+ l are independent points; consider the segment xlxr+l and find on it a 
point x r + t E A and such that XlXr + 1 ~ A ; Xr + 1 is independent from xl, • •., xr: 
for, otherwise xr+l, which lies on a prolongation o fx l x r+l ,  would lie in 
V{xl . . . .  , Xr) and this is absurd; xr+l is the point we were looking for.El 

We now introduce the following definition: 

Definition. If  xl . . . . .  xr+ 1 are r + 1 independent points, we call 
xl " " " xr+l the r simplex with vertices xl  . . . . .  xr+ 1 and [xl " ' "  x r + l ]  

the extended r simplex with the same vertices. 

We can now prove the following lemma: 

Lernma 5. Z I f  V is an n-dimensional manifold of  M, then any 
n simplex x 1 • -- xn+1 contained in Vis open for the topology 9-I(V). 
A s x l  " • "xn+l is convex, it is an open set also for J ' K ( V ) .  
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Proof. This is done by  induction in the following sense: l_emma 4.8 gives 
us the result for a two-dimensional manifold; but  it  also means, via I_emma 5.1, 
that ,  i f  we have an n-dimensional manifold and a nontrivial triangle in it, x y z ,  

then it is open in the topology induced by  3 -  K on V ( x , y ,  z } .  So, let  us now 
assume that ,  in V, every (r - 1) simplex xl • • • Xr, for a fixed r(~< n ) i s  open in 
V{x l  . . . . .  Xr}; we will prove that  then every r s implexyl  • • "Yr+l  is open in 
V~I  . . . .  , Yr+l}. This will yield in particular the result to be proved. Consider 
(see Figure 12)y l  • • • Yr+l  = {Yl}(Y2 " " " Yr+l), a point  x E y  I • .  • Y r+ l  and any 
point  z E V{t'1, • •. ,  Yr+l}; then, by  virtue of  I_emma 5.1 two points u, v E 
V(F~ . . . . .  Y r + l }  exist such that  v E u z ;  a s x  and u belong to ~I}(Y2" " " Yr+l), 
two points  x ' ,  u '  E y 2 • • • Y r + l  exist such that  x E y l x ' ,  u E y l u ' ;  now the 
induction hypothesis  and Axiom 6 imply that  a point  w '  E y  2 • • • Yr+ 1 exists 

! ~ ! . f t 
such that x E u w .  Consider y l u  w; by  the associativity proper ty ,  we know 
there exists w E y l w '  such that  x E u w ;  now Theorem 4.4, applied to z u w ,  

leads to the existence o f z '  E x z  r~ y 1 • • • Yr+l.[:] 

The last-proved lemma aims obviously at reaching the equivalence proof  
between J ' K ( V )  and the topology generated, in an n-dimensional manifold V, 

¥1 
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V 

w 

W I 

Figure 12. 
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by the family ~ x n ( V )  of all its n simplexes; we only need a farther lamina, 
which is, in a sense, a strengthening of Lemma 5.6. 

L a m i n a  5. 8. Le t  V be an n-dimensional manifold of M; let B be an 
element of MK, basis for Y K ( V ) ,  and let x EB;  then there exists a 
simplex ~ o f ~ n ( V  ) such that x E ~ C B. 

Proof .  A p p l y  L e m m a  5.6 to  x @ B n t imes  and f m d  x y l  . . . yn,  w i t h  

x ,  y l  . . . . .  Yn independent points orB; asB is convex xyl - •. Yn C B; then 
take z '  E y i .  • • Yn  and, as B is open, z E B such that x E zz ' ;  obviously 
z $ Y l  " " " Yn so that z, Yl, • • -, Yn are independent; besides, owing to the 
convexity of simplexes and of B, we have x C z y l  • • • Yn ~- B.[] 

It remains to be checked that the family~xn is indeed a basis for a topology: 
This is obvious since (i) if ~i, ~2 belong tO~xn  , then 1~ 1 ¢3 ~2 is open and 
convex (for ~--K), and then, by Lemma 5.8, for any x E Y'I N ~2 there is ~3 
such that x E Z3 --q Z1 c~ E2; (ii) for any x E M  there is a E E ~x n  that contains 
it (the proof is completely analogous to that of Lamina 5.8). 

The result can now be stated in the following theorem: 

Theor em  5. 3. The topology generated on an n-dimensional manifold 
V by ~ z n ( V )  is J K ( V ) ,  that is, ~ ~ n ( V )  is a basis for the topology 

One remarkable feature of the structure here exhibited consists in the 
possibility of obtaining the main results concerning the theory of affine spaces 
on the basis of relatively few axioms, concerning the order structure of seg- 
ments and properties of their prolongations. 

The analysis can be carried farther, as is easily understood, but we think it 
is already evident what the relevant implications concerning the space-time 
structure may be. Very roughly speaking, we have shown that the very simple- 
minded assumption about the possibility (easily irnplementable by means of 
elementary physical experiments, at least local ly)  of assigning a "segment" to 
each couple of events is quite far-reaching for the geometric structure of space. 
time. 
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