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Abstract

A new mathematical structure is introduced, to be called segmented structure, defined by
the assumption that for any pair of its points x, y a subset is defined, reasonably identi-
fiable as “the segment joining x and y.” The reason for such a research is the existence of
a physically reasonable way of defining the segment joining two points of space-time.
Thus, a powerful enough structure of space-time arises, which appears as deducible on
physically reasonable grounds.

1. Introduction

In this work we want to describe a mathematical structure that turns out
to be relevant in a possible approach to the problem of physical foundation of
the space-time structure, Actually, we have endeavored to fully exploit the
hypothesis that, given two events x and y in the “space-time,” there is a
physically reasonable way of assigning a set of events that can be thought of
as a “segment” joining x and y. We have carefully avoided any “linearity”
argument and have used only a few axioms about prolongability of our
segments, to see what can be deduced therefrom; in fact we have succeeded in
defining such concepts as dimension and manifold and in proving a number of
reasonable results about them. We believe that such work has a remarkable
geometric meaning too, as it exhibits what may be thought of as the purely
geometric origin of many concepts, usual fi. in Euclidean geometry. In
particular, in a segmented structure it is possible to work out a reasonable
theory of dimension, simplexes, etc.

1 Work supported in part by C.N.R.
2 Full address: Via Celoria 16, 20133 Milano, Italy.
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14 MANIA AND SPARZANI
2. Abstract Segmented Structures

An abstract segmented structure is a pair (M, p) of a nonempty set M and a
map p: M x M - P (M) satisfying axioms 1-8 that we will introduce at
various stages throughout sections 2-4; for any pair (x, y) €M x M, the subset
p(x, y) is simply denoted by xy and called the segment joining x and y
or simply segment xy.

Axiom 1. (vx,,x,y €M) [y =xy) ¢ (Ix,y} = &,y D]
Axiom 2. (xy=¢)® x=y)

Axiom 33 z€xy ¢ [xz Cxy and xz # ¢]

Axiom 4. [zE€xyandu€zy] =>zExu

We stop to draw a few consequences that will clarify the further axioms we
eventually introduce. In order to avoid cumbersome nomenclature, we will
talk of segmented structure also before introducing all axioms with the

obvious meaning of “the structure satisfying all axioms introduced so far.”

Lemma 2.1. ¥z €xy,thenzy Cxy.
Proof: zE€xy=zEyx=yz Cyx=zy Cxy.ll
Lemma 2.2. 1f z&€xy and v Exz,then z €vy.
Proof: (zE€xyandvExz)=(zE€yxandv Ezx)=>z €y =z Evp.ld

Lemmas 2.1 and 2.2 are but symmetrizations of statements contained in
axioms 3 and 4.

Theorem 2.1. If x # y, the relation “z, fy z, if xzy € xz, is a partial ordering
inxy.
Proof: (i) fy is obviously reflexive; (ii) <is transitive: (z; < z, and
Xy Xy

Zy fy 23)=> (xz21 S x2, S x23) =24 §y z3 for any (24, 25, 23) EXY X Xy X XV;
(iii) j} is antisymmetric: (24 fy 2z, and z, f«y 21) = (X217 S x24 and xz9 S x29) =
X2y = Xz, which, by virtue of axiom 1, implies z; =z,.00

The structure of a segment is further analyzed by the following lemma:

Lemma 2.3. ForanyzE€xy,xzMNzy=¢.

Proof: Suppose u € xz Nxy;then [z €xy and u €xz] = xu Cxz =>u§yz
andu#z;but(zE€xyandu€zy)=>z€xu = xz Cxu =z;‘<~yu,whichis

clearly incompatible with the former.[]

Lemma 2.3 can be conveniently stated saying that, for any z €Exy,
xz U {z} U zy is a disjoint union, obviously contained in xy. So far, any non-
trivial xy has the structure of a poset without minimum and without maximum.
For, if z is any element belonging to xy, we can always find a u € xz (which

3 Here and in the following = means: “is properly contained in” and < means “is con-
tained in.”
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is nonempty) that obviously satisfies u S7 and u ¥ z. The symmetry of
segments forbids analogously the existetice of a maximum. It is easy to see
that we can “extend” any nontrivial segment xy to a poset with minimum and
maximum by adjoining the elements x and y (respectively, if the order is §y %

such a subset is called extended segment {xy]; further, we set [xx] = {x}. We
also have the following:

Lemma 2.4. If x # y the segment xy contains at least a denumerable
infinity of distinct points of M.

Proof:  The proof is quite straightforward, as one easily defines a sequence
of distinct points all belonging to xy, for instance by setting z, € xy,
zi41 € xz; for any integer 4.

So far, the structure of a segment is still allowed to be “not flat,” in the
sense that the order we have defined on a segment is not necessarily total. The
following theorem shows how this requirement is equivalent to a strengthening
of the statement of Lemma 2.3:

Theorem 2,2, I x #y,then < > is a total ordering for xy iff for any
zE€xy{xz U {z}Uzy =xp).

Proof: (a) SupposeVz €xy(xz U {z} U zy =xy); then, if 24, z, are
distinct points of xy, we either have z, €xz; or z, €z,v; in the first case we
have z, x<y zq, in the second z; € xz,, whence z; fy 24 follows. Conversely,
if the order is total we have, for any z and u belonging to xy: =z oru 5 z
orz s u)=>(u zorxuCxzorxz Cxu)=>u=zoru€xzorz €:xu)=>

w= zoruExz oru&zy)@(xzu {z}Uzy =xy).O

Corollary: if 3 < is total, then ~ is the dual ordering of & < : for, let zy, z, be
distinct points of xy and suppose 3 5 52 then xz; S xz,, whlch implies, by
Theorem 2.2, 2,y Sz, 1.6, 25 S o < z O

Then we set as our fifth axiom the following:
Axiom 5. (Vz€xy)(xzU {z} Uzy2 xy)

Thus, any nontrivial segment xy in M is now a chain, for both § and < ; it
contains a subchain isomorphic to Q, the chain of rational numbers with
the natural ordering, since it does contain a countably infinite subset, dense
in itself with respect to the induced ordering (Birkhoff, 1973). Such a subset
is easily obtained by a procedure slightly more careful than the one exhibited
in suggesting the proof of Lemma 2.4. We just need to consider, for a given
nonempty segment zoz;, a point zyy € 2ozy, then 2y €X24pp and 234 €215y
and so on, inserting between Zy/yr and Zx + 127 a new point to be called
Zog + 1/27+ 1. S0, a subset is inductively defined, which is dense in itself and
countable, so that the quoted theorem applies.
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3. Topological Arguments

In this section we need to introduce a number of topological arguments.
First, it is obvious that on each nontrivial segment the order topology is defined:
a basis for it is the collection of all the subsegments z,z, with z;, z5 € [xy].
The extended segment [xy] can be given a topology simply by taking as basis
the said collection of open intervals of xy and the subsets of the type
X} Uxzi(z1 €x9), 2,0 U ¥}z, €xp); in this topology the closure of xy is
evidently [xy].

But, more important, we can define a topology (or rather various topologies)
on the whole M. Let us give a previous natural definition:

Definition. A subset K & M is called convex if it contains xy when-
ever it contains x and y.

Denote by 2 the collection of all the convex subsets of M. Obviously any
segment {either extended or not) is a convex set and the intersection of any
family of convex subsets of M is a convex subset of M, so that it makes sense
to define the convex hull CoA of any subset 4 of M, as

Cod = KQA K
Kexd
The convex hull of a set x, y consisting of two distinct points coincides with
the extended segment joining them.

Now, there are various topologies on M that appear as naturally definable.
The first one, which we denote by J;, is defined by the following basis of
subsetsof M: #; = {(BCM|VxEBVzEM, Iy €EBs.t.y Exz,xy C B} this
means that a subset B €%, must contain, for each of its points, a segment
starting from it and pointing to every “direction.” It is easy to prove that 4,
is indeed a basis for a topology; for, M € %, so that each x € M belongs to at
least one element of %4, ; secondly, let By, B, belong to #; and consider B3 =
By N B,;let x belong to B; and z to M: then there is a y; € B; Nxz and
Y2 €B; N xz such that xy; C By and xy, C B, ; as the order is total on xz, we
can suppose, say, ¥, fz Yo, thenxy, CB; NB, =B,

It may be worth remarking that this topology is not so obvious, in the
sense that, for instance in the standard case of the Euclidean space and
Euclidean open segments in it, J; does not coincide with the usual topology:
It is strictly finer than that, as one easily realizes by considering, say in R?,
such subsets as the one sketched in Figure 1, which is indeed an open set for
7 and not an open set for the usual topology.

One also realizes that the crucial shortcoming with this topology is that it
is not necessarily locally convex, as the exhibited example again shows. So it
seems natural to introduce the following topology, which we shall call x:
consider the collection of subsets of M defined by By =%, N A By isa
basis for a topology essentially because M is convex and the intersection of
convex subsets is a convex subset; thus By defines a topology T k. Tk is
locally convex and is in general coarser than .7 .
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Figure 1.

A further topology that one might be tempted to introduce in M is the
inductive topology 77 with respect to the family of all segments and of their
natural injections in M: This is the finest topology for which all such injections
are continuous; we will show that J7 is finer than 773, and in general strictly
so. In order to assure the equivalence between these two topologies one further
axiom is going to be needed, which amounts to requiring that every segment of
M can be prolonged. We now prove the following theorem:

Theorem 3.1. For a segmented structure (satisfying axioms 1-5) we
have 972 7.

Proof: let A CM, A€ Jq;then, for any segment xy, ]';},(A) =xy NA4
is open in xy: for, if xy N A # ¢, take any z €xy N 4 and choose z' and z”
with the properties zz' € zx N 4 and zz" < zy N A4, which is possible by virtue
of the assumption 4 € J,; then z'z" is an open subset of xy containing z and we
have 2’2" =220 Z}VUzZ" S (zx NAU Z} U@y NA)Sxy NA4A.0

In trying to prove the converse ( 7 < ;) one comes upon the difficulty
that one cannot prolong a segment beyond either one of its extreme points;
an example will clarify the matter: Consider the closed ball B, of radius equal
to 1 in R” and define a segment xy in the usual (Euclidean) way; note that
none of the segments with one end on the boundary §,, _ ; of B, can be pro-
longed beyond that end; now consider a subset F of B, defined as the union
of a ball whose radius is strictly smaller than 1 with one arbitrary point z of
Sy — 15 this is not open for the topology 7 4, obviously; but it is open for 7,
because any ]';Jl,(F }is open in xy, as z cannot belong to it.

The last example could raise the suspicion that J; being finer than 7
depends on the fact that there are points not belonging to any segment,
rather than to the nonprolongability of some segments; that this is not so is
shown by the following example: consider a closed (in the Euclidean topology)
halfplane M in R? and let s be the straight line boundary of M; let the segments
in M be defined in the obvious way: each point of M is contained in a segment
(note, however, that for points on s the “direction” of such a segment is
uniquely determined). A subset of M that is the union of an open subset (in
the sense of the Euclidean topology) of the half-plane with an open segment
lying on s is open for 7 and not for J7, as is easily seen; furthermore, with
respect to I 7, M is even a nonconnected topological space, in that it can be



18 MANIA AND SPARZANI

obtained as the union of two of its disjoint open subsets: s and its complement in M
(that this is not so with respect to .77 is immediately seen).

On the other hand, if we postulate the following further axiom the
situation actually improves:

Axiom 6. If xy is a nontrivial segment of M, then there exists a
z € M such that x € zy (hence xy C zy).

In fact we now prove that under Axioms 1-6 the following result holds:

Theorem 3.2. The two topologies 7 and J; on M are equivalent.

Proof:  We have already proved that J; < J7. As for the converse,
suppose 4 € J; that amounts to saying that xy N 4 is open in xy for any
segment xy S M. Let x €4 and z € M; consider the segment xz and, by virtue
of Axiom 6, choose a point y € M such that x € yz; yz N 4 is open in yz and
contains x; it will then contain a segment 22" such that x €22" C yz N 4; it
follows that, say, xz2"< xz N A4,so that 4 € ;.0

As for general properties of the topologies so far introduced it is easy to see
that ; (and hence J7) is a T; topology: Each subset of M of the form
{x}(x €M) is closed; that M — {x} is open for 7, is immediately seen, since
for any z €M —~ {x}, the nonempty segment zx contains a subsegment zy (take
any y € zx) which is contained in M — {x}. As for J g, we do not have at this
point any statement, but the question will be examined more closely in
Section 5.

4. Geometrical Axioms

In order to develop a fairly reasonable geometry of polyhedra in a segmented
structure, we have to introduce some further axioms, the first of which amounts
to requiring the uniqueness of the prolongation of a given segment. It can be
precisely formulated in two points, as follows:

Axiom 7. M x,y,z, w,are four distinct points of M, then
(a) y €Exz N xw implies either z €xw or w €xz; and (b) x €yz and
z €xw imply x € yw.

While (a) means that two prolongations of the same segment must be one con-
tained in the other, (b) means that the prolongation of a subsegment of a given
segment is 2 prolongation of the whole segment as well.

Axioms 7(a) and 7(b) will be used throughout as they will prove crucial in
many proofs; it is not easy to see what happens if we relax even only one of
them.

Next, we make the following definition of join and extended join.

Definition. If A and B are nonempty subsets of M, the join (respectively,
extended join) of A and B, denoted by AB (respectively, [AB]), is
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the subset of M consisting of all segments (extended segments) joining
a point of 4 with a point of B:

s = U i s = U
AB: =g (respectively, [AB]: 24 D
VEB yEB
With this definition we have, obviously,

A UB < [4B], AB < [4B], AB = BA, AESB=>ACSBC,
AAE A iff 4 is convex

x} y=xy,[{x} {¥}] = [xy] for any couple of points x, y of M; besides,
[AB] is never empty, and ABisempty if and only if A =B = {x} withx € M.
In terms of join, a useful characterization of openness is the following:

Theorem 4.1. 1f aset A < M is open (with respect to  ; = J ) then
ASAXLVxEM

Proof: Suppose 4 open in M; then if y €4 and z € M, find a z’ such that
y €22y since A is open, there exist 2 €4 Nz'y;theny €2z < 4 {z}O
The converse is not true, as the example of @ C R shows (with obvious
definitions of segments).

An interesting and natural property of the join is the one assumed with
the following axiom:

Axiom 8. If x,y, z are distinct points of M,
(X} D iz} = XKD

We will often refer to this property as associativity.
Before showing what happens with extended joins, note that associativity
allows for a sensible definition of triangle in M:

Definition. Call triangle with vertices x, v, z, (distinct points of M)
the subset xyz of M given by ({x} {y}) {z}. Analogously call extended
triangle [xyz] the subset [[{x} {¥}] {z}]*
It is immediately seen that, by virtue of Axiom 8, the definition of xyz is
completely symmetric with respect to the three points x, y, z. As for extended
things, the following theorem obtains:

Theorem 4.2. If x, y, z are distinct points of M, then
[} 23] = [{xH{p}zH]

Proof: The two subsets of M that we must show to be equal contain the
common nonempty subset {x}{y}{z}); an easy direct inspection shows that
points of [[{x}{y}] {z}] that are not in ({x}{y}){z} may only lie on [xy]
or on [xz] or on [yz] and these sets are contained in [{x}[{¥}{z}]]; thus the
proof is completed.[3

4 From now on, by X, ¥, z, . . . we will always mean points of M, unless the contrary is
explicitly stated.
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z

Figure 2.

Theorem 4.3. Every triangle is convex.

Proof:  Let xyz be a triangle of M and u and v two distinct points of xyz;
this means that «’ and v’ exist, belonging to xy (say) such that u € zu" and
v € zv’ (see Figure 2). In order to show that a point w of uv also belongs to
xyz consider the triangle zu'v' € zxy. Remark that, by associativity zuv' =
uzv'S u'z' = zu'v', as w € zuv’, w € zxy follows.[J

It may be interesting to show an explicit example of a structure satisfying
Axjoms 1-7 but not Axiom 8, thus showing the independence of the latter
from the former. Let M' = R? be given a segmented structure by the following
prescription: The segment joining (x;, ¥o) With (x5, yo), is {(x,») € R% s.t.
%1 <x <X,y = Yol the segment joining (x1, y1) with (3, 32), say y1 > yy, is
theset {(x, N ER? s.t. %, <x,y=3IU {(x, )N ER st.y, >y >y} U
{G,y) ER? 5.t. x < x;,¥ =y, }; in other words segments are open chains in
R? ordered by the lexicographic order. So far, M' is a segmented structure
satisfying Axioms 1-7, and also Axiom 8, trivially as any triple of points of
M consists of collinear points, so that every triangle is trivial. Consider now
the set M =M' x R = R? with the following definition of segments: If two
distinct points have the same “third coordinate,” say (x, », ), (x’, ¥}, 2),
define the segment joining them via the definition previously given for M’
and the obvious bijection of M’ onto M’ x {z};if two points do not have the
same third coordinate, define the segment joining them as the usual Euclidean
open segment; one easily checks that this structure satisfies Axioms 1-7. On
the other hand ((x, y, 2)(x" ¥, 2)) &x", ", z'} contains properly, whenever
z#2, {06, y, )M, ¥, 2)(x", ¥", z)) as one easily sees.

Further consequences of the associativity are the following:

Lemma 4.1,  A(BC) = (4B)C for any triple 4, B, C of subsets of M.
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Proof.
U = U
ABC) = Y, (1, 0HED) = o2, (BN D)

z&':C yEB
z€C

=Y (1onEp=wus)C
=

Lemma4.2. {x}A is convex whenever 4 is convex.

The proof is elementary.
Lemma4.3. (xy)K is convex whenever K is convex.

Proof. ()K= (x}{yDHK = {x}({y1K), which is convex, as Lemma 4.2
shows.
Lemma4.4. KK, is convex whenever K, and X, are convex.

Proof. Let {x,y} < KiK,; this means that there exist x;, y; in K; and
Xy, ¥ in K, such that x €xyx,, ¥y € y1y,; then x € {x,1K,,y € {1}K;, and
this implies, by the very definition of join, xy < ({x; }K3){¥1}K3) € {%1{11K,,
where the relation K,K; € K has been used. As {x1}{y13K; € KK, (as K is
convex) the proof is completed.[]

Completely analogous lemmas hold in which joins are replaced by extended
joins.

We now have to go into a number of results concerning triangles:
The aim is to exhibit the georetrical properties of a segmented structure
satisfying Axioms 1-8 and to prepare the background for the main theorems
on manifolds. We will call xyz a nontrivial triangle if x, y, and z are not collinear,
i.e., if none of them lies on the segment joining the other two. Note that, by
virtue of Axiom 7(b), if two points z and z’ of M lie on the prolongation of
a nonempty segment xy, then they are collinear with both x and y.

Lemma 4.5. If xyz is a nontrivial triangle, and if u € yz, then
xyz = xyu U xu U xuz and the union is disjoint.

Proof.  The only nontrivial thing to prove is disjointedness. This is where
nontriviality of the triangle comes in. For, suppose w Exyu Nxu {see Figure
3); then, as w € xyu, there must be a pomt #' € yu such that w € xu'; but then
w € xu N xu’ implies either u € xu’ or 1’ € xu, and this leads easily to the
collinearity of x, y, and z. Completely analogous is the proof for disjointedness
of xu and xuz and of xyu and xuz.[J

Remark. 1f the extended triangle is considered, an obvious argument leads
tothe conclusion that [xyz] = Deyu] U [xuz] and that [xyu] N [xuz] = [xu].
A very important result is now the following theorem:

Theorem 4.4. Ifu €xy and v €z, then xv Nzu # .
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X

Pigure 3.

Proof.  As xv is nonempty (unless x € yz, in which case the theorem is
trivial) choose a point r on it: r belongs to xyz; if » € zu our task is completed;
(see Figure 4) by Lemma 4.5 the only other possibilities are 7 € zxu or r € zuy.
Consider the first case: Then, by Axiom 8, there is a point ' € zu such that
rExr' by Axiom 7, as r €xr’ N xv, either v € x (which is false as v & xyz)
or ¥ € xv, 50 that ¥ € zu N xv, If, on the other hand, 7 € zuy (then call it 7")
consider the triangle zvu; obviously 7" €zvu and not to vu or to vuy, as is
seen applying the remark following Lemma 4.5 to the triangle xvy. Then the
above argument works again and shows that there is a point 7 on zu Nvx.(

If now Axiom 7(b) is taken into account, it is easy to see that for a non-
trivial triangle the said intersection consists of exactly one point.

We proceed now with the following lemmas:

Figure 4.
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z

w y

Figure 5.

Lemma4.6. fu€xz,vEyz,wExy, then wz Nuw # ¢.

Proof.  (See Figure 5). By Theorem 4.4 there isaz' €zw Nuy, so that
the triangle zuy can be considered and associativity applied to it: zz' Nuw is
not empty and so is wz N up.0 Again nontriviality of xyz would lead to
wz M uv consisting of just one point.

Lemma4.7. Ify €xpand v €xyz, then pv N yz F# ¢,

Proof.  (see Figure 6). As v € xyz, there exists w € xy such that v € zw;
applying Theorem 4.4 to the triangle pwz gives the result.[]

Remark.  1f v’ belongs to the side xz of xyz (“opposite” to p), the lemma
still holds, again by virtue of Theorem 4.4 applied to the triangle pxz.
A basical lemma is the following:

Lemma 4.8, Iu, v, wbelong to xyz, and v Eup, then wp Nxyz # ¢.

Proof.  (See Figure 7). First it must be proved that there are two points
u’ and v’ belonging to distinct sides (one of the points possibly coinciding with
a vertex) of the triangle such that uv C u'v"; this can be easily done as follows:

P
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z

Figure 7.

Divide up xyz into three triangles by the segments ux, uy, and uz, then check
where v lies: If not on one of the three segments named (in which case the
result follows immediately), say, v € uzy, apply associativity to find v’ €zy,
then repeat the argument starting from v and conclude [here Axiom 7(b) is
crucial] that u' € xy and v’ € zy must exist such that uv C u'v’ If now w € zu'y
(that is either tozu'v' or to u'v" or to u'v'y) the result follows by Lemma 4.7.
If w €xu'z find w’ € xz such that w € u'w’. Now the result follows by applying
the remark following Lemma 4.7 to the triangle u'v'W’ Thus, a point w" exists
belonging to u'v'w’, and then to xyz, such that w" € wp and the lemma is proved.
Note that, by Theorem 4.3, ww" < xyz.[1

In order to generalize these lemmas to tetrahedra and polyhedra we need
some previous definitions and remarks.

From what we have seen with Theorems 4.2 and 4.3 it is evident that
every triangle is convex, every extended triangle is convex, and the equality

[xyz] = Cofx,y,z}
holds true for any triple (x,y, z) of points of M.
Now we define, by induction,
Xyt X = (g X 1) (X}
and, analogously,

ey Xp] = [P Xy 1] Xl
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that is, what we can reasonably call the n-polyhedron and extended #-poly-
hedron of vertices xq, . . ., X, it is easy to generalize the above equality to the
following:

e x,] =Cofxy, .. .. x,}

indeed, that [x; - - - x,,] S Co{xy, ..., x,} is obvious from the definition of the
left-hand side, and that [x - - - x,,] 2 Co{xy, . . ., x,} is shown by proving, by
induction, that [x; - - - x,,] is convex. Suppose that [x; - - - x,] is convex for
any n-tuple (x4, . . ., x,,); then Lemma 4.2 (generalized to extended joins)
shows that [x; « - X,.q] = [[x; - - x,] {x041}] is convex too. From now on,
then, the symbols [x; - - - x,] and Co{x,, .. ., x,} can be interchangeably used;
notice, in particular, that, if y ECo{xl, o« Xphapointy' € Cofxy, ..., X, 4}
can be found such that y € [y'x,]. On the other hand it is true by deﬁnltlon
that if y €x; - - - x, there exists a point 3’ €x; - - - x,_; such that yEY'x,.

We now generalize Lemma 4.7 to the case of a 4vpolyhedron, as this case
proves useful for the general case too.

Lemma4.9.  Let xy, x5, x3, x4 be distinct points, y € x,x,x3%, and
Xy €x2; then yz N Xyx,X3x4 ¥ ¢ and is a convex subset of yz.

Proof {See Figure 8). As y Ex1x2x3,x4, there exists ¥’ €x,x3x, such that
y Exly consider the trlangle xy 'z: Theorem 4. 4 states that there exists
Y Exay' 0 zy; then "y S x3"y' S xp0,x3%4 ¥y can be assumed nonempty
because y =y"” would imply collinearity of X1, X2, 2, ¥,y and the proof would
be trivial.(J

Figure 8.
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Now, let K be a convex subset of M;let K * be the following set:
K*= {x €M,s.t.3 x;, x, €K s.t. X; €Xx,}; then the following lemma is
important:

Lemma 4.10. For any K, convex subset of M, K™ is convex and, if
K contains at least two distinct points, K € K™,

Proof  (See Figure 9). Let x, y €K™ then Xy, x,, ¥1, ¥, exist in K such
that x, € XX, y, € y,y; we have to show that xy CK*: Let z €xy and let u
be any point of xyx,y1¥,. As K is convex we have also [xx,y1y42] =
Cofxy, X2, 1, ¥»} S K:by Lemma 4.9 «' and " exist such that ' € xu, u” Eyu
and u', u" belonging to x;x,y1¥,; consider now the triangle uxy; by Lemma
4.6 u'u” N uz is nonempty so that a point v exists such that v € uz and
vEu'u" S x%,y1v, S K. As for the second statement of the lemma, note that
if K = {x}, then K™ = ¢; but that if K contains at least two points, from x €K,
xy < K follows for some y # x, and then x, which lies on a (actually on each
“left>) prolongation of xy, belongs to K*[)

Figure 9.
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Figure 10.

The second fundamental property of the operation K - K™ is idempotency,
proved by the following lemma:

Lemma 4.11. T K< Mis convex, then K™ = (K*)* = K™
Proof.  (See Figure 10). Obviously we just need to show K** S K™ If z

belongs to K™ it means that x, y exist, belonging to K™ such that, say,

¥ € xz; thus we reproduce the situation of Lemma 4.10 as for points x and y,
adjoining now z. Remember that the whole uu'u" is obviously contained in
K; then consider uxz: A point z' exists on ux such that & €zz'; take now a
z" belonging to the nonempty set uu’ Nuz'; we have z” €uu' S K; besides,
as z” E uz' a point v €uu” C K exists such that v € 2"z, and this implies
ze€K[1

5. Manifold Theory in Segmented Structures

We now want to work out a manifold theory in a segmented structure; it
will turn out that many results familiar from the Euclidean case generalize to
a segmented structure. First we need some natural definitions:

Definition. A subset V of M is a manifold in M if V=CoVandif V
contains the extended prolongations of all the segments lying in V;
this may equivalently be formulated by saying that if x, y are distinct
points in M and if xy contains two distinct points belonging to V,
then [xy] C V.
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Obvious consequences are that M itself is a manifold, every subset of M
consisting of a single point {x} is a manifold in M, and that if ¥, is a manifold
for each « € 4, then N,V is a manifold.

This allows us to define the manifold spanned by a subset 4 of M, as the
intersection of all manifolds containing 4; we will denote it by VA4 =:
V is a manifold.

Definition. n distinct points (x, . . ., x;,,) of M are said to be Co inde-
pendent (respectively, V independent) if the relation {x;, ..., x,} C
Colyy, . ..,y (respectively {xq1, ..., %3 C V{py, ...yt isnot
satisfied for any rtuple (yy, . . ., ¥,) of points of M, withr < n — 1.

v8a?

It is obvious that ¥ independence implies Co independence, as Co{yy, . . ., V&
Vi1, ..., »} and the inclusion is, in general, strict.

Accordingly, we introduce the following definition of dimension for a
segmented structure M; the definition makes sense for any convex subset K
of M [such that Axioms 1-8 are satisfied in X (this condition is nontrivial for
Axiom 6)], in that K itself may be thought of as a segmented structure.

Definition. We say that a segmented structure M has a finite Co di-
mension (¥ dimension) and that this is n, where n is a positive integer,
if there is in. M a (n + 1)-tuple of Co-independent (V-independent)
points but no (# + 2)-tuple of such points.

We will denote by ne the Co dimension and by ny the ¥V dimension. If for
any n there is an (n + 1)-tuple of Co-independent (V-independent) points,
we say that M has infinite Co dimension (V-dimension).

The relation between Co and V independence implies that if nic and ny
both exist finite, then ne 2 ny holds true; as for other possible cases, we can
say that if the ¥ dimension is infinite then so is the Co dimension. If, for a
given segmented structure M, both the dimensions exist finite, we call the
positive or null integer np — ny the complexity of M;if ny is finite and the
Co dimension is infinite we say that the complexity is infinite; the complexity
is not defined if both the dimensions are infinite.

An elementary example will clarify the significance of such a definition:
Consider a plane convex polygon with 7 sides (n 2 3) and such that three of its
vertices are never collinear; its interior M can be given the obvious Euclidean
segmented structure; M has complexity equal (its Co dimension being equal o
n — 1) ton — 3, as is easy to check; analogously B,, the open unit ball in R?,
has infinite complexity; these trivial examples elucidate, by the way, the
algebraic-geometric relevance of the notion of complexity.

We now proceed to establish the main properties of manifolds with the

aim of getting a better description of the relations between topology in
M and its (to be defined) simplexes. A few lemmas will be needed.

By independence and independent we will always mean, unless the contrary

is explicitly stated, ¥ independence and ¥ independent, respectively.

Lemma 5.1.  If K is a convex subset of M containing at least two
distinct points, we have VK = K™
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Proof. (a) K* S VK because z € K™ implies that z lies on the grolonga
tion of a segment of K and hence z € VK. (b) VK < K™ because K™ is a non-
empty convex subset containing K, such that K* = K** and hence is a manifold.[J

Lemma 5.2. If A is any subset of M containing at least two distinct
points, we have V4 = (Co 4)™

Proof. From Lemma 5.1 it follows ¥(Cod) = (Cod)™ On the other hand,
V(Cod) 2 VA and also V{COA) = VA since Cod € ¥4 and V(VA) VA O
Take, in particular A=x; - xp Wehave Vixy, .., x. =[x x,]%=
(Cofxy, . . ., x,1)" According to our definitions, it is obvious that whenever
Gy e e x,,) is an n-tuple of independent points, V{x, . . ., x,,} has dimension
n — 1; for, it contains the n-tuple (x;, . . ., X,) of independent points and it
cannot contain an (r + 1)-tuple (¥4, . . ., ¥,+1) of independent points by the
definition of independence.

Lemma 5.3. ¥ {4, ..., Y, is an n-tuple of independent points,
then we have ;¢ V{n,..., 55 ..., Vot foranyi from 1 to n. (The
caret over y; means that y; has to be omitted).

Proof. The proofis obvious: If »; €V {yy, .. ., J; . . ., ¥} then {¥1, ..., p,}
SV{¥1,.. 9 ..., n}, which cannot be, owing to the independence assump-
tion.[]

Lemma54. I (n,...,Yn-1)isan (n — 1)tuple of independent
points and y,, and z exist such that y,, ¢ V{1, ..., Vs 1} and

D b SV, ezl then Vi, o ot = Vi, . . L,
Y15 Z}

Proof.  For the sake of brevity, put W=V, .. ., Vo 1}, =SV, Val
W, =V, ..., ¥u_1,2}. We already know that W, = ({z}W)". Then as y, €W,
we can find p and g in {z}W such that (unless ¥, € [pq], which is the most
favorable case and leads to an immediate proof), say, p € y,q (see Flgure 11).

If now p’ and q' are those pomts of W such that p € [zp] and g € [z4'],
consider the tnangle zp'q": p'q and q’p meet in r; on the other side 7 belongs
to the triangle ynqq so that y,q" and gp’ meet in a point ¥, which cannot
coincide with p’ because y, ¢ W and because therefore ¢ can always be
chosen off W as well. Then g, which is on a prolongation of p’7' (lying in W, >
and z, which is on a prolongation of g4’ (lying in W, are in Wy, Therefore
Wz S W), and hence the conclusion.[]

Corollary. Owing to the Lemma 5.3, Lemma 5.4 is @ fortiori true if the
first two assumptions are replaced by the assumption “If (4, . . ., v, is an
n-tuple of independent points of M.”

Lemma 5.5. Suppose that foragivenr, with 1 <r<n ~ 1 the
following is true: If (3, . . ., ¥, 1) is an (n — 1)-tuple of independent
points,if y, ¢ V¥, ..., ¥y1},andif z, . . ., z, are points such that
b’ls «o s Vn— layn} = V{y]: e Vn—p 21 - - "Zr}a then V{yla . "yn} =
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z

P

Figure 11.

Vi, .« v Yn—r 215 - - - 2 }. Then the same statement with 7 replaced
by r+1istrue,

Proof. let {,...,¥,_1} ben — 1 independent points, let
In €V, .. w¥n_1h,andletzq, . . ., 24y besuch that {, ..., v, 0E
V{yla e Vn—r—1:215- - Zr+1}. Note that {Zl’ LT Zr+1} = V{yl: v -:yn—l} is
certainly false, because it would imply v, €E V¥, .. o Vn} SV, - o Vner—1s
Ay Zrsd SV, . .., Yu_1), and this is contrary to the assumption. Then
there is at least one of the zs, say z;, not belongmg to V{1, -« o Pu—1t-
Note now that we have (31, ....¥,_1,23 E V- - s Vnr—1,215 -« o Zra1hs
the set of points on the left-hand side and the set of points on the right-hand
side differ by (at most) r points (that is, the second set contains z,, . . ., Z 44 in
place of ¥y, . . .. ¥u_1), so that we are in a position to apply the result which
has been assumed true. Then we conclude: V{3, .. , ¥u_ 1,210 = V¥s oo o Vn—r—1s
Zy, - . . Zp+1}; and, again taking into account the assumption {yy,..., P4 }1<
V{Vl; e V1215 -« Zl’-i-l}: we get {}’1: “ . -,J’n} = V{yls s wVn—1s Z}};
this time, as y,, € V01, ..., Vn_1}, we can use Lemma 5.4 and get V{y,, ..., y,} =
V{yla » e ':vyn—hzl} = V{yl: SRR (T PR PN Zr+1}-D
The following theorem is now obvious:

Theorem 5.1. If {3y, ..., ¥y1}is an (n — 1)-tuple of independent
points, if y,, ¢ V{y1,...,V,_1}and zy, . . ., z,, are such that
DYl SV, .. za) then Vg, oL ) = Wz, . L, 200
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Corollary. Owing to Lemma 5.3, Theorem 5.1 is obviously true if the first
two assumptions are replaced by the assumption “if {y, ..., ¥} is an n-tuple
of independent points.”

Corollary; The converse of Lemma 5.3 is now provable; ie., if {1, ..., Y1}
is an (n — 1)-tuple of independent poiats, if ¥, is such that 3, ¢ V{yy, .. . Y1}
then yy, . . ., ¥y, are independent.

Proof. Suppose {yy, . . ., ¥,} dependent; this would imply the existence of
Zy, oo Zp_gsuchthat {py, ..,y S Vg, ...z, (hibut,asyy, .. ., v, ate
independent and contained in ¥z, . . ., z,_1}, we have, by Theorem 5.1,
Ve wdn—1} =Wz, oo wzp_1 hasy, €V{z, .. ., 2, _,} a contradiction
arises.[]

Theorem 5.2. If V'S M is an n-dimensional manifold (withn > 1)
and if {x, ..., %} is an ~tuple of independent points of ¥, with

r< n,then there exists an X,y in V'such that {x;, ..., %, x4} isan
(r + 1)-tuple of independent points.

Proof.  Vix, ..., x} cannot coincide with V: for, since ¥ has dimension
n, there must exist an (n + 1)-tuple of independent points {z, . . ., 2,41} such
that V{zy, ..., 2,4} = V. Vix, ..., %} = V, with r < n, would contradict the
independence property of the z; then pick an x,.; ¢ Vix, ..., x,} and
belonging to V; by the corollary just proved, x;, . . ., x,, X, 44 are independent.[]

It is obvious that, in the case of a manifold with infinite dimension, a
completely analogous theorem warrants the possibility of finding in it an
arbitrarily high number of independent points.

Lemma 5.6. 1et A be a subset of M, such that VA4 is of finite
dimension n and A4 is open in the topology 7(VA) induced on VA4
by 1= T L If {x, ..., %} is an r-tuple of independent points in
A, w1th r < n, then there exists in 4 a point x,.; such that x;, . . ., %,
X,4; are independent.

Proof Use Theorem 5.2 and find a point x4, € VA such that x,, . . ., %,
X,+; are independent points; consider the segment x%,+1 and find on it a
point X,.; €4 and such that x,x, .+ € 4; x,4, is independent from xy, . . ., x,:
for, otherwise X; +1, which lies on a prolongation of x;x, ., would lie in
Vixi, . . ., X,} and this is absurd; x,..; is the point we were looking for.(]

We now introduce the following definition:

Definition. Ifxy, . . ., %,4q are r + 1 independent points, we call
** X,41 the r simplex with vertices xy, . . ., X,4; and [x; * - - Xp+1]
the extended 7 simplex with the same vertices.

We can now prove the following lemma:

Lemma 5.7. If Vis an n-dimensional manifold of M, then any
n simplex x; + - - X, 41 contained in ¥ is open for the topology F1(V).
Asxy + +* X, 41 IS convex, it is an open set also for F (V).
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Proof. This is done by induction in the following sense: Lemma 4.8 gives
us the result for a two-dimensional manifold; but it also means, via Lemma 5.1,
that, if we have an n-dimensional manifold and a nontrivial triangle in it, xyz,
then it is open in the topology induced by Jx on Vix, y, z}. So, let us now
assume that, in ¥, every (r — 1) simplex x; - * - X,, for a fixed (< n)is open in
Vixy, . . ., x}; we will prove that then every » simplex 34 * - * ¥,4¢ is Open in
Vi1, - - ., Vr+1}- This will yield in particular the result to be proved. Consider
(see Figure 12) p1 -+« yp41 = (1}(2* " Yp41),a point x €y - -+ ypyg and any
point z € V{3, . . ., ¥p+1}: then, by virtue of Lemma 5.1 two points u, v €
Vi, .o y,H} exist such that v €uz;asx and u belong to {))1}(3;2 *Vr+ih
two points x', ' €y, - - - y,41 exist such that x € yyx/, u € yu'; now the
indyction hypothesm and Ax1om 6 1mp1y that a point w' €y, - - 3,44 exists
such that x" €u'w’. Cons1der yu'Ww'; by the associativity property, we know
there exists w € y;w’ such that x € uw; now Theorem 4.4, applied to zuw,
leads to the existence of z’ €xz Ny -« * Ypypqp.0

The last-proved lemma aims obviously at reaching the equivalence proof
between J (V) and the topology generated, in an n-dimensional manifold ¥,

Y

r

w

Figure 12.
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by the family #y (V') of all its n simplexes; we only need a further lemma,
which is, in a sense, a strengthening of Lemma 5.6.

Lemma 5.8.  Let V be an n-dimensional manifold of A; let B be an
element of Hy, basis for Tx(V), and let x € B; then there exists a
simplex £ of By (V) such thatx €X CB.

Proof.  Apply Lemma 5.6 to x € B n times and find xy, - - - y,, with
X, W, . .., Yn independent points of B; as B is convex xy; - - * y, C B; then
take z' €3y + - - ¥, and, as B is open, z € B such that x € zz; obviously
z&y, - - yysothatz y, ..., ¥, are independent; besides, owing to the
convexity of simplexes and of B, we havex €zy, - - - y, SB.[]

It remains to be checked that the family #s_ is indeed a basis for a topology:
This is obvious since (i) if Z;, Z, belong to#y_, then Z; N Z, is open and
convex {for 7 ), and then, by Lemma 5.8, for any x € Zy N Z, there is Z;
such that x € Z3 € Z; N Z,; (if) for any x € M there is a £ € %y that contains
it (the proof is completely analogous to that of Lemma 5.8).

The result can now be stated in the following theorem:

Theorem 5.3. The topology generated on an n-dimensional manifold
be #s,(V)is Tg(V), that is, Bz (V) is a basis for the topology
Tx).

One remarkable feature of the structure here exhibited consists in the
possibility of obtaining the main results concerning the theory of affine spaces
on the basis of relatively few axioms, concerning the order structure of seg-
ments and properties of their prolongations.

The analysis can be carried farther, as is easily understood, but we think it
is already evident what the relevant implications concerning the space-time
structure may be. Very roughly speaking, we have shown that the very simple-
minded assumption about the possibility (easily implementable by means of
elementary physical experiments, at least locally) of assigning a “segment” to
each couple of events is quite far-reaching for the geometric structure of space-
time.

Acknowledgement

A useful discussion with Prof. G. Meloni is gratefully acknowledged.

Reference

Birkhoff, G. (1973). Lattice theory. (American Mathematical Society Colloquium
Publications, Providence, R.1.}, 3rd ed., Chap. VIII, Theorem 23.



